With all my discussion of convalescent plasma for Covid-19 this week*, here's a historical perspective on the technology and changes in medical practice since the discovery of blood circulation in 1628 that allows blood and plasma to be used in medicine.
A history of blood transfusion: a confluence of science—in peace, in war, and in the laboratory
by Kevin R. Loughlin
Hektoen International, Volume 12, Issue 2 – Spring 2020.
"Since 1628 when William Harvey discovered the circulation of blood, there had been hope that blood transfusion would be possible.
...
"After Harvey’s discovery, transfusion attempts began. In 1665 Richard Lower kept dogs alive by transfusing blood from other dogs.2 In 1667 French physician Jean Denys transfused nine ounces of blood from the carotid artery of a lamb into the vein of a young man. He continued the practice until the third patient so treated, died.3 Denys was sued by the wife of the deceased patient, who presumably died from a hemolytic reaction, but was exonerated. However, the French Parliament, the Royal Society, and the Catholic Church subsequently issued a general prohibition against transfusions.4
"It would not be until 1818 when transfusions were seriously considered again. A British obstetrician, James Blundell, performed a human blood transfusion in the setting of a postpartum hemorrhage.5 However, the debate over transfusions continued over the remainder of the nineteenth century. In 1849 C.H.F. Routh reviewed all the published transfusions to date and remarked in the Medical Times that of the 48 recorded cases, 18 had a fatal outcome and concluded that the mortality rate was unacceptably high.5 The next major advance in transfusion therapy would wait until the turn of the century.
"Karl Landsteiner was an Austrian physician and immunologist. While working at the University of Vienna, he became interested in blood serum work, specifically the factors that led to hemagglutination of red blood cells. This resulted in two landmark publications in 1900 and 1901 that described the evidence of blood groups that he named A, B, and C.6,7 These would later be modified to A, B, and O. Two years later, two of his colleagues, Alfred Von Decastelo and Adriano Sturli, would add a fourth blood type, AB.8,9 Landsteiner would be awarded the Nobel Prize in 1930 for his elucidation of the blood groups.
... in 1912, Doctor Roger Lee demonstrated that O blood could be given to a person of any blood type (universal donor) and that a person with AB blood could receive blood from any blood group (universal recipient).
...
"As blood transfusions became more widespread in medical practice, the concept of establishing blood banks became attractive. In the 1930s Bernard Fantus at Cook County Hospital20 and Carl W. Walter at Peter Bent Brigham Hospital started blood banks. In Boston, Walter’s efforts were viewed with such skepticism and disdain that his facility was relegated to a basement room at Harvard because some trustees thought the storage and use of blood was “immoral and unethical.”21 Fifteen years later he invented the plastic blood bag, which greatly facilitated transfusion therapy.21
...
"In 1940 Edwin Cohn developed ethanol fractionation, the process of breaking down plasma into component products. Albumin, gamma globulin, and fibrinogen were isolated to become available for clinical use.
"In 1944 dried plasma became available for the treatment of combat injuries. Component transfusion therapy became more widely used as the war progressed. The Red Cross concluded its World War II blood program in 1945 after 13 million pints had been collected.11
"In 1961 platelet concentrates became recognized for reducing mortality from hemorrhage in cancer patients. In 1964 plasmapheresis was introduced as a means of collecting plasma for fractionation. In 1971 Hepatitis B surface antigen (HbsAg) testing of donated blood began and in 1992 testing of donor blood for HIV-1 and HIV-2 antibodies commenced.
*************
*here's a recap of my earlier coronavirus posts relating to plasma this week:
A history of blood transfusion: a confluence of science—in peace, in war, and in the laboratory
by Kevin R. Loughlin
Hektoen International, Volume 12, Issue 2 – Spring 2020.
"Since 1628 when William Harvey discovered the circulation of blood, there had been hope that blood transfusion would be possible.
...
"After Harvey’s discovery, transfusion attempts began. In 1665 Richard Lower kept dogs alive by transfusing blood from other dogs.2 In 1667 French physician Jean Denys transfused nine ounces of blood from the carotid artery of a lamb into the vein of a young man. He continued the practice until the third patient so treated, died.3 Denys was sued by the wife of the deceased patient, who presumably died from a hemolytic reaction, but was exonerated. However, the French Parliament, the Royal Society, and the Catholic Church subsequently issued a general prohibition against transfusions.4
"It would not be until 1818 when transfusions were seriously considered again. A British obstetrician, James Blundell, performed a human blood transfusion in the setting of a postpartum hemorrhage.5 However, the debate over transfusions continued over the remainder of the nineteenth century. In 1849 C.H.F. Routh reviewed all the published transfusions to date and remarked in the Medical Times that of the 48 recorded cases, 18 had a fatal outcome and concluded that the mortality rate was unacceptably high.5 The next major advance in transfusion therapy would wait until the turn of the century.
"Karl Landsteiner was an Austrian physician and immunologist. While working at the University of Vienna, he became interested in blood serum work, specifically the factors that led to hemagglutination of red blood cells. This resulted in two landmark publications in 1900 and 1901 that described the evidence of blood groups that he named A, B, and C.6,7 These would later be modified to A, B, and O. Two years later, two of his colleagues, Alfred Von Decastelo and Adriano Sturli, would add a fourth blood type, AB.8,9 Landsteiner would be awarded the Nobel Prize in 1930 for his elucidation of the blood groups.
... in 1912, Doctor Roger Lee demonstrated that O blood could be given to a person of any blood type (universal donor) and that a person with AB blood could receive blood from any blood group (universal recipient).
...
"As blood transfusions became more widespread in medical practice, the concept of establishing blood banks became attractive. In the 1930s Bernard Fantus at Cook County Hospital20 and Carl W. Walter at Peter Bent Brigham Hospital started blood banks. In Boston, Walter’s efforts were viewed with such skepticism and disdain that his facility was relegated to a basement room at Harvard because some trustees thought the storage and use of blood was “immoral and unethical.”21 Fifteen years later he invented the plastic blood bag, which greatly facilitated transfusion therapy.21
...
"In 1940 Edwin Cohn developed ethanol fractionation, the process of breaking down plasma into component products. Albumin, gamma globulin, and fibrinogen were isolated to become available for clinical use.
"In 1944 dried plasma became available for the treatment of combat injuries. Component transfusion therapy became more widely used as the war progressed. The Red Cross concluded its World War II blood program in 1945 after 13 million pints had been collected.11
"In 1961 platelet concentrates became recognized for reducing mortality from hemorrhage in cancer patients. In 1964 plasmapheresis was introduced as a means of collecting plasma for fractionation. In 1971 Hepatitis B surface antigen (HbsAg) testing of donated blood began and in 1992 testing of donor blood for HIV-1 and HIV-2 antibodies commenced.
*************
*here's a recap of my earlier coronavirus posts relating to plasma this week: